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Overall Objective

§ The primary objective of the proposed program is to
develop and design a distributed actuation methodology
for wings of UCAVs aimed at

– Control of higher-order flutter modes

– Increased maneuverability

– Reduced radar signature
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      Tasks                  Year 1     Year 2          Year 3

Aeroelastic
Modeling and

Control

Wind Tunnel
Model

Development

Actuator
Development

Control System
Design for Large

Scale Model

Aerodynamic Model

Control System Design and
Closed-Loop Evaluation

Structural Model

Transducer Designs for
Large Scale Model

Large Scale Transducer
Modeling / Integration

Design and Development
of Large-Scale Model

Aeroelastic Model
for Large-Scale Experiment

Address Control
Authority Requirements

Control System
Design and
Evaluation

Transducer Designs
/ Bench Tests

Design, Development and
Open-Loop Characterization

Transducer Modeling /
Integration

Time Line of Technical Approach
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Team Assignments/Contributions

§ Duke University
– Aeroelastic modeling,

analysis, and design
– Transducer specifications

and integration

– Control system modeling,
analysis, and design

– Bench testing
– Wind tunnel testing

§ Mide Technologies, Inc.
– Transduction device

modeling, design, and
construction

– Design and control surface
integration on large-scale
wing model
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Major Accomplishments

§ Completed design and testing of high aspect ratio wing
model in Duke University Wind Tunnel to correlate
computer model used to design wing.

§ Completed design specifications for a typical section
wind tunnel model to evaluate performance of X-
Frame actuator with a single control surface.

§ Selected transduction device, X-Frame actuator, for
distributed control surface.

§ Initiated design of continuously deformable distributed
control surface for control of high aspect ratio wing
flutter.
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Typical Section Model

airfoil

flap
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X-Frame Actuator Technology (Courtesy
of Mide Technology Corporation)
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FLEXible Distributed Control Surface (FLEXDCS)

wing flexible interconnection

Distributed Control Surface

expand
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Motivation for FLEXDCS

§ Maneuverability

§ Control of higher-order flutter modes

§ Reduced signature for radar

§ Spatial smoothing filter using discrete active materials
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Theoretical Model

§ A nonlinear aeroelastic model has been developed that
predicts flutter and LCO as a function of important
parameters, e.g.
– Coupling among flap-wise and edge-wise bending and

torsional motions
– Static angle of attach and gravity loading
– Magnitude of disturbance required to initiate LCO

below the nominal flutter boundary
§ Flutter typically occurs due to coupling of a higher order

flap-wise bending mode and the fundamental torsional
mode.
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Experimental Model

§ An experimental model has been designed, constructed, and initial
tests have been conducted.

§ Flutter occurs as predicted in a higher order span-wise mode.
§ Large static deformations occur in the model prior to the onset of

flutter as the static angle of attack of the model is increased.

§ As predicted, the flutter speed decreases with increasing angle of
attack.

§ These initial tests were conducted with a vertically mounted model to
eliminate the effects of gravity.

§  Future tests will include the combined effects of gravity and static
aerodynamic loading due to angle of attack.  Also, the effects of large
disturbances will be explored.
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Experimental Models
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Program Impact

§ Correlation between theoretical and experimental models
are good and indicate that basic physics of the nonlinear
aeroelastic system have been captured.

§ Concepts investigated and under development are directly
related to UAV and UCAV needs of the Air Force, Army,
and Navy.

§ The large-scale wind tunnel model development is planned
as a logical progression to future application on a flight
vehicle.


